Safe Haven Door Evaluation Under Blast Loading

Kyle Perry, PhD, PE Associate Professor Missouri S&T

Outline

- Project Summary
- Safe Haven Wall Specific Work
- Background
- Status
- Plan Forward

Project Summary

- Research, Technology and Human Interventions for Self-Escape in Underground Mine Emergencies
 - NIOSH Contract 75D30120C08913
 - 36 Months
- Intelligent Communication for Efficient Self-Escape
- Initiative to Empower Miners for Self-Escape
- Advancing Refuge Alternatives in Mine Emergencies
- Underground Mine Fire Emergency Evacuation Optimization

Advancing Refuge Alternatives in Mine Emergencies

- Specifically, looking at Refuge Alternative Doors and their performance under blast loading
- 5 Tasks (summarized)
 - 1. Obtain Doors and Determine where to Position Them
 - 2. Construct Reaction Structure and Dial in Explosion
 - 3. Test Doors
 - **4**. Computer Models
 - 5. Provide Design Recommendations

Background

- Relatively easy to computationally determine thicknesses of plates, supporting members, etc. to resist a pressure vs. time curve
- Much more difficult to determine how the "fine" mechanisms will respond
 - Locks
 - Handles
 - Hinges
 - Seals
 - Etc.

Previous Experience

- Similar experience in testing blast resistant windows
- Often, the glazing and frame perform fine, but the locking mechanism and hinges (depending on window type) would fail
- These are often overlooked, but are necessary to be robust enough to ensure the safe haven remains accessible and air-tight

Doors of Interest

- Kennedy Metal Products
- <u>Aurora</u> Manufacturing

Kennedy Door

Aurora Door

Courtesy of NIOSH

Preliminary Modeling

Doors are on Site

Design of the Reaction Structure is complete

Status

Once materials can be sourced, will be ordered and constructed soon

Door Positioning

Blue Line

- Orientation for initial phase of testing
- Green Line
 - More realistic
 - Potential second round of testing

- Achieve an acceptable pressure vs. time waveform
 - "Blank" door
 - C4
 - Coal dust of various quantities
 - Instrumentation

Door Testing

- Kennedy
- Aurora
- Instrumentation & Documentation
- Operational? Functional? Damage?

Model Calibration and Extrapolation

- Calibrate models to measured data
- Extrapolate to various waveforms
- Careful care to look at hinges, latches, locks, etc.
- Hopefully determine failure points

Provide Design Recommendations

- Benefits of certain design components?
- Drawbacks of others?
- Failure points to be reinforced?
- Recommendations determined by data obtained from physical testing and models.

Limitations

- This research is only focused on <u>two</u> Refuge Alternative Door Manufacturers
- However
 - Lessons will be learned on what works
 - There are differences in latches and hinges (among others) between the manufacturers
 - This will help future designs to be as safe as possible to help ensure functionality after an explosion

For Example

Single Latch Point
Vs

Dual Latches

Challenges

- Finding skilled personnel to weld/construct reaction structure
- Experimental Mine Manager position is vacant for the second time in less than a year
- Need more hours in a day

Thank You

- Kyle Perry, PhD, PE
- Associate Professor of Explosives Engineering
- kperry@mst.edu