

InSAR for Mining

A CLS Group Company

Giacomo Falorni 2 October 2024

Basic Principles of InSAR

- □ InSAR processing & data precision
- InSAR Capabilities, limitations and program design considerations
- What's next

ecision ns and program design

Basic Principles of InSAR

- InSAR processing & data precision
- InSAR Capabilities, limitations and program design considerations
- What's next

SAR satellites InSAR fundamentals

Interferometric Synthetic Aperture Radar

Remote sensing technique for measuring ground deformation

- using data from radar satellites
- advanced algorithms
- without ground instrumentation

SAR Satellites

- Polar, sun synchronous orbits
- Active systems don't require sunlight
- All-weather systems
- Fixed revisit frequency (4, 7, 11, 12... days)
- View the ground surface at an off-vertical angle
- First SAR satellite launched in 1992

 $\Delta \phi$ between two SAR images is proportional to the movement of the object on the ground

InSAR – measuring phase differences

 $\Delta \varphi = \frac{4\pi}{\lambda} \Delta R + \alpha$

- InSAR measurements are 1D along the satellite LOS
- Ascending and descending orbits observe the ground from different directions
 - East-looking orbit has best coverage of east-facing slopes
 - West-looking orbit has best coverage of west-facing slopes
- 2D measurements (Vertical and East-West) are generated by combining overlapping LOS data

InSAR geometry

- Remote sensing of areas hard to reach/no instrumentation
- □ Long-term, strategic monitoring of entire mine
- Verifying design performance, prioritizing inspections, surveys and deploying ground-based sensors
- Assessing historical ground displacement
- Low impact and low-cost monitoring for legacy assets

When is InSAR Used?

Basic Principles of InSAR

- InSAR processing & data precision
- InSAR Capabilities, limitations and program design considerations
- What's next

Outline

- Processing techniques
- Sources of noise
- Data precision

A CLS Group Company | © TRE ALTAMIRA

Multi-temporal - SqueeSAR

Strategic areas/low surface variations

- » Frequent updates every 11 days/monthly
- 1-D and 2-D displacement **>>**
- ± 1 mm/yr precision $\boldsymbol{\times}$
- ± 2 mm sensitivity **>>**
- **Full-resolution** \rightarrow

Areas of fast movement

- Frequent updates every 11 **>>** days/monthly
- 2-D (LOS, Azimuth) or 3-D (with \rightarrow two orbits)
- » ± 10-15 cm/yr precision
- Rapid movement (>50 cm/yr) \rightarrow
- Coarse resolution (100x100 pixels) \rightarrow

A CLS Group Company | © TRE ALTAMIRA 2024

Processing Techniques

Rapid Motion Tracking

Bulletins

Operational/changing areas

- » Updates every 11 days
- » 1-D (LOS) displacement and visibility maps
- 0.5-1cm precision \rightarrow
- 0.5-1 cm/11 days sensitivity \rightarrow
- Medium-resolution (5-10 pixels) **>>**

11

From phase...

Δφ = displacement
+ topography effects
+ atmospheric noise
+ decorrelation noise

Factors affecting Precision

...to displacement.

Used at project setup

Very important for monitoring programs of active mines

What Affects Precision - Topography

Interferogram without updated DEM

Interferogram with updated DEM

□ Time of acquisition

 Greater atmospheric noise during day time

Acquisition geometry

- Higher angles off of
 vertical means signal
 travels longer distance
- Distance from the reference point

What Affects Precision - Atmosphere

- Areas affected by temporal decorrelation
 - radar signal is not coherent over time
- Surface changes in the period of the analysis

□ Seasonal surface changes

What Affects Precision - Decorrelation

- Length of the interval analysed
- Temporal continuity of acquisitions

What Affects Precision – Other Factors

Multi-temporal InSAR

Basic Principles of InSAR

- InSAR processing & data precision
- InSAR Capabilities, limitations and program design considerations
- What's next

Outline

- What InSAR can/cannot do
- Choosing the right approach
- Data visualization

- Long-term, strategic monitoring of entire mines
- High-frequency monitoring of rates from mm to m/year
- Prioritization of inspections, surveys and ground-sensor deployment
- Forensic analysis of ground displacement

What InSAR Can & Cannot Do

- X Real-time tactical monitoring
- X See through water, snow& dense vegetation
- X Replace ground-based radars
- X See all areas of the mine with a single orbit
- X Predict ground displacement

Choosing the Right InSAR Approach: Satellite

Image resolution
Revisit frequency
Temporal continuity
Wavelength
Cost

- Ascending and descending orbits observe the ground from different directions
 - East-looking orbit has best coverage of eastfacing slopes
 - West-looking orbit has 0 best coverage of westfacing slopes

Choosing the Right InSAR Approach

Satellite orbit and viewing angle

Varied rates of displacement

Choosing the Right InSAR Approach

Active Operations & Rate Variations

PROCESSING DATA

Satellite	TSX
Orbit (angle)	Ascending (Θ = 27.3 ^o)
Date Range	Jan 2022 - Apr 2024

LOS Displacement Rate [mm/yr]

Background: Esri World Imagery Map Projection: WGS 1984

© TRE ALTAMIRA 2024

Technical Considerations – Tailings Facilities

Varied rates of displacement Buttress raises Vegetation **U** Water

SqueeSAR Analysis

Topographic Cross Section

Choosing the Right InSAR Approach

Cross Section Line

560

1,120

Esri World Imagery © TRE ALTAMIRA 2024

Commercial in confidence

□ Frequent changes to the ground surface

- Impact coherence 0
- **Combination of processing** 0 approaches needed

Bulletins show displacement over 11 days

Choosing the Right InSAR Approach

Active Operations - Tailings

SqueeSAR Analysis

InSAR Bulletin

□ Little or no displacement in most areas

- Possible long-term slope movement
- Vegetation
- □ Water
- **Cost**

Choosing the Right InSAR Approach

Monitoring Legacy Assets

PROCESSING DATA

Satellite	Sentinel	
Orbit (angle)	Ascending ($\Theta = 35.97^{\circ}$)	
Date Range	Sep 2020 - Apr 2024	≤-10

- Point with LOS rate decrease
- Point with LOS rate increase

- Map rate or cumulative displacement
- Highlight changes in trend and differential displacement
- Time-slice data
- Filter by rate, acceleration & quality
- Overlay polygons & pins
- High-resolution optical base images

Data Visualization & Delivery

- 17 November 2016 slope failure in a copper open-pit mine
- **Imagery**: 12-day revisit SNT imagery.
- the SqueeSAR time series

Early detection with SqueeSAR

Accelerations outside of the geotechnical monitoring area observable starting from May 2017 in

- TSF Dam failure occurred on 09 March 2018
- **Imagery**: 11-day revisit TSX imagery.
- First acceleration observable in late 2017 from the SqueeSAR time series

Early detection with SqueeSAR

Carlà, T., Intrieri, E., Raspini, F. et al. Perspectives on the prediction of catastrophic slope failures from satellite InSAR. Sci Rep 9, 14137 (2019).

□ Satellites • **3D** measurements Data Fusion **□** Error Bars Reappearing targets Machine Learning Water pond/saturation mapping

New Developments

Number of SAR satellites is increasing:

- Growing demand for earth observation data
 - First NASA SAR satellite, NISAR, being launched in 2024 2025
 - Several new constellations of SAR satellites operated by private companies planned:
 - Numerous small satellites \bigcirc in same orbit
 - Daily/hourly revisits \bigcirc
 - Non-polar orbits and new viewing geometries \bigcirc will allow **full 3-D measurements**

SAR Satellites: Future

We measure ground and structural movement from space

Commercial in confidence

Data Fusion

Combine InSAR measurements from different missions/sensors with diverse:

- wavelengths
- resolutions (MP density)
- geometry (A/D, look direction)
- revisit time

obtain an advanced merged to deformation product no longer related mission design parameters and to extracting and collating as much info as possible from each one

Error Bars – characterizing uncertainty

Surface changes or severe weather conditions introduce noise in the time series

Overcoming loss of coherence

Classic Approach

ML for Filtering Noise

ML Approach

Classic Approach

ML for Filtering Noise

ML Approach

- □ Accurate, repeatable approach to tracking supernatant ponding and saturation levels in TSFs
- □ Semi-automatic combination of EO layers
- Maps tailored to site needs and operational requirements
- □ Limited cloud cover requirement
 - Incorporation of SAR data for all-0 weather monitoring

Water Saturation Mapping

Dry

Water Index

Water Transition Zone

1,500 feet 750

We measure ground and structural movement from space

Commercial in confidence

MILAN

Ripa di Porta Ticinese, 79 20143 Milano - ITALY Tel: +39 02 4343 121

BARCELONA

Carrer de Còrsega, 381-387 08037 Barcelona - SPAIN Tel: +34 93 183 57 50

VANCOUVER

Suite 410, 475 West Georgia Street Vancouver, BC V6B 4M9 - CANADA Tel: +1 604 331 2512

Regional offices FRANCE

Parc Technologique du Canal 11, Rue Hermès F-31520 Ramonville St Agne Tel: +33 561 39 47 19

AUSTRALIA

Suite 207 – 122 Toorak Road South Yarra Melbourne Tel: +61 455 154552

BRAZIL

RJ, 20.040-009

Thank you!

Thank

VOU

Giacomo Falorni giacomo.falorni@tre-altamira.com

Av. Rio Branco, 311 sala 1205 Centro, Rio de Janeiro, Tel +55 21 2532-5666

CHILE

Almirante Señoret 70, Oficina 74 Valparaíso Tel +56 32 2252843

PERU

Av. Angamos Oeste 537 Miraflores, Lima Tel: +51 1 4402717

SOUTH AFRICA

B3 Millside Park, Morningside Road Ndabeni, 7405, Cape Town Tel: +27 21 705-0819